Beneficial effect of the soluble guanylyl cyclase stimulator BAY 41-2272 on impaired penile erection in db/db-/- type II diabetic and obese mice.

نویسندگان

  • Kenia Pedrosa Nunes
  • Cleber E Teixeira
  • Fernanda B M Priviero
  • Haroldo A Toque
  • R Clinton Webb
چکیده

Type 2 diabetes mellitus (DM2) and obesity are major risk factors for erectile dysfunction (ED). In diabetes, increased oxidative stress leads to decreased nitric oxide (NO) bioavailability, and diabetic patients appear to be less responsive to conventional therapy with phosphodiesterase type 5 inhibitors. We investigated whether the soluble guanylyl cyclase stimulator BAY 41-2272 (5-cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridine-3-yl]pyrimidin-4ylamine) is effective in improving impaired corpus cavernosum (CC) relaxation in obese DM2 mice by reducing oxidative stress. Adult db/db(-/-) mice or their lean db(/+) littermates were used to assess vascular function, cGMP levels, antioxidant status, NADPH oxidase expression, and superoxide formation in the absence or presence of BAY 41-2272. Results showed that BAY 41-2272 (10(-8) to 10(-5) M) potently relaxed CC from db(/+) or db/db(-/-) mice in a similar manner. BAY 41-2272 significantly enhanced both endothelium-dependent and nitrergic relaxation induced by electrical field stimulation (EFS), and improved the impaired relaxation to acetylcholine and EFS in the diabetic animals in a concentration-dependent manner (10(-8) to 10(-7) M). BAY 41-2272 increased cGMP levels and potentiated relaxation responses to exogenous NO in CC. Total antioxidant status was reduced in plasma and urine whereas expression of vascular NADPH oxidase subunits (gp91phox, p22phox, and p47phox) was increased in the CC of db/db(-/-) mice, suggesting a state of oxidative stress. These effects were prevented by BAY 41-2272 in a concentration-dependent manner. These results suggest that BAY 41-2272 improves CC relaxation in db/db(-/-) mice by increasing cGMP and augmenting antioxidant status, making this drug is a potential novel candidate to treat ED.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of BAY 41-2272 on smooth muscle tone, soluble guanylyl cyclase activity and NADPH oxidase activity/expression in corpus cavernosum from wild-type, neuronal and endothelial NOS null mice

We aimed to characterize the relaxation induced by the soluble guanylyl cyclase (sGC) stimulator BAY 41-2272 and its pharmacological interactions with nitric oxide (NO) in the corpus cavernosum (CC) from wild-type (WT), eNOS and nNOS mice. The effect of BAY 41-2272 on superoxide formation and NADPH oxidase expression was also investigated. Tissues were mounted in myographs for isometric force r...

متن کامل

Novel soluble guanylyl cyclase stimulator BAY 41-2272 attenuates ischemia-reperfusion-induced lung injury.

The protective effects of nitric oxide (NO), a physiological activator of soluble guanylyl cyclase (sGC), have been reported in ischemia-reperfusion (I/R) syndrome of the lung. Therefore, we studied the effects of BAY 41-2272, a novel sGC stimulator, on I/R injury of the lung in an isolated intact organ model. Lung injury was assessed by measuring weight gain and microvascular permeability (cap...

متن کامل

Effects of 5-cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridine-3-yl]pyrimidin-4-ylamine (BAY 41-2272) on smooth muscle tone, soluble guanylyl cyclase activity, and NADPH oxidase activity/expression in corpus cavernosum from wild-type, neuronal, and endothelial nitric-oxide synthase null mice.

We aimed to characterize the relaxation induced by the soluble guanylyl cyclase (sGC) stimulator 5-cyclopropyl-2-[1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridine-3-yl]pyrimidin-4-ylamine (BAY 41-2272) and its pharmacological interactions with nitric oxide (NO) in the corpus cavernosum (CC) from wild-type (WT), endothelial nitric-oxide synthase (eNOS)(-/-), and neuronal (n)NOS(-/-) mice. The effec...

متن کامل

Spironolactone treatment attenuates vascular dysfunction in type 2 diabetic mice by decreasing oxidative stress and restoring NO/GC signaling

Type 2 diabetes (DM2) increases the risk of cardiovascular disease. Aldosterone, which has pro-oxidative and pro-inflammatory effects in the cardiovascular system, is positively regulated in DM2. We assessed whether blockade of mineralocorticoid receptors (MR) with spironolactone decreases reactive oxygen species (ROS)-associated vascular dysfunction and improves vascular nitric oxide (NO) sign...

متن کامل

Soluble Guanylyl Cyclase (sGC) Degradation and Impairment of Nitric Oxide-Mediated Responses in Urethra from Obese Mice: Reversal by the sGC Activator

Obesity has emerged as a major contributing risk factor for overactive bladder (OAB), but no study examined urethral smooth muscle (USM) dysfunction as a predisposing factor to obesityinduced OAB. This study investigated the USM relaxant machinery in obese mice and whether soluble guanylyl cyclase (sGC) activation with BAY 60-2770 [acid 4-({(4-carboxybutyl) [2-(5fluoro-2-{[4-(trifluoromethyl) b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 353 2  شماره 

صفحات  -

تاریخ انتشار 2015